UNIVERSITY OF MUMBAI

Syllabus for sem V & VI

Programme: B. Sc.
Course - Information Technology

(as per Credit Based Semester and Grading System w.e.f. Academic Year 2013 – 14)
Semester V

Courses and Course Codes

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>USIT501</td>
<td>Network Security</td>
<td>USIT5P1</td>
<td>Network Security Practical</td>
</tr>
<tr>
<td>USIT502</td>
<td>Asp.Net With C#</td>
<td>USIT5P2</td>
<td>Asp.Net With C# Practical</td>
</tr>
<tr>
<td>USIT503</td>
<td>Software Testing</td>
<td>USIT5P3</td>
<td>Software Testing Practical</td>
</tr>
<tr>
<td>USIT504</td>
<td>Advanced Java</td>
<td>USIT5P4</td>
<td>Advanced Java Practical</td>
</tr>
<tr>
<td>USIT505</td>
<td>Linux Administration</td>
<td>USIT5P5</td>
<td>Linux Administration Practical</td>
</tr>
</tbody>
</table>

Semester VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>USIT601</td>
<td>Internet Technology</td>
<td>USIT6P1</td>
<td>Internet Technology Practical</td>
</tr>
<tr>
<td>USIT602</td>
<td>Project Management</td>
<td>USIT6P2</td>
<td>Project Management Case Studies</td>
</tr>
<tr>
<td>USIT603</td>
<td>Data Warehousing</td>
<td>USIT6P3</td>
<td>Data Warehousing Practical</td>
</tr>
<tr>
<td>USIT607</td>
<td></td>
<td></td>
<td>Project Report</td>
</tr>
<tr>
<td>USIT608</td>
<td></td>
<td></td>
<td>Project Viva Voce</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td>USIT604</td>
<td>IPR and Cyber Laws</td>
<td>USIT6P4</td>
<td>IPR and Cyber Laws Case Studies</td>
</tr>
<tr>
<td>USIT605</td>
<td>Digital Signal And Systems</td>
<td>USIT6P5</td>
<td>Digital Signal And Systems Practical</td>
</tr>
<tr>
<td>USIT606</td>
<td>Geographic Information Systems</td>
<td>USIT6P6</td>
<td>Geographic Information Systems Practical</td>
</tr>
</tbody>
</table>
Semester V

<table>
<thead>
<tr>
<th>PROGRAMME:</th>
<th>B. Sc (Information Technology)</th>
<th>COURSE: NETWORK SECURITY</th>
<th>COURSE CODE: USIT501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periods per week</td>
<td>Lecture</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Evaluation System</td>
<td>Theory Examination</td>
<td>Theory Internal</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Unit I
Computer Security: Introduction, Need for security, Principles of Security, Types of Attacks
Cryptography: Plain text and Cipher Text, Substitution techniques, Caesar Cipher, Mono-alphabetic Cipher, Polygram, Polyalphabetic Substitution, Playfair, Hill Cipher, Transposition techniques, Encryption and Decryption, Symmetric and Asymmetric Key Cryptography, Steganography, Key Range and Key Size, Possible Types of Attacks

10 Lectures

Unit II:
Symmetric Key Algorithms and AES: Algorithms types and modes, Overview of Symmetric key Cryptography, Data Encryption Standard (DES), International Data Encryption Algorithm (IDEA), RC4, RC5, Blowfish, Advanced Encryption Standard (AES)

10 Lectures

Unit III:
Asymmetric Key Algorithms, Digital Signatures and RSA: Brief history of Asymmetric Key Cryptography, Overview of Asymmetric Key Cryptography, RSA algorithm, Symmetric and Asymmetric key cryptography together, Digital Signatures, Knapsack Algorithm, Some other algorithms (Elliptic curve cryptography, ElGamal, problems with the public key exchange)

10 Lectures

Unit IV:
Digital Certificates and Public Key Infrastructure (PKI): Digital Certificates, Private Key Management, The PKIX Model, Public Key Cryptography Standards (PKCS), XML, PKI and Security, Hash functions, Key Pre-distribution, Blom’s Scheme, Diffie-Hellman Key Pre-distribution, Kerberos, Diffie-Hellman Key Exchange, The Station-to-station Protocol

10 Lectures

Unit V:
Network Security, Firewalls and Virtual Private Networks: Brief Introduction to TCP/IP, Firewalls, IP Security, Virtual Private Networks (VPN), Intrusion

10 Lectures

Unit VI:
User Authentication and Kerberos: Authentication basics, Passwords, Authentication Tokens, Certificate-based Authentication, Biometric Authentication, Kerberos, Key Distribution Center (KDC), Security Handshake Pitfalls, Single Sign On (SSO) Approaches

10 Lectures
Books:
(Unit I: Chapter 1, 2, Unit II: Chapter 3, Unit III: Chapter 4, Unit IV: Chapter 5,
Unit V: Chapter 6, Unit VI: Chapter 7)

References:
Cryptography: Theory and Practice by Douglas Stinson, CRC Press, CRC Press LLC.

Course Code : USIT5P1

Practicals:
 1. Implementing Substitution Ciphers
 a. Caesar Cipher
 b. Modified Caesar Cipher
 c. Mono-Alphabetic
 d. Poly-Alphabetic
 2. Implementing Transposition Ciphers
 a. Rail fence Techniques
 b. Simple Columnar
 c. Multicolumnar
 d. Vernam Cipher
 3. Implementing Diffie Helman Key Exchange Algorithm
 4. Implementing DES Algorithm
 5. Implementing IDEA
 6. Implementing AES
 7. Implementing RSA Algorithm
 8. Implementing RC4, RC5
 9. Implementing Blowfish

Pioneer Education Center
Ideal for B.Sc.IT/C.S FY / SY / TY 99208 12021 / 2808 2086 www.bepioneer.com

Pioneer Education Center
Ideal for BSc IT / Comp Sci
Branches : Andheri Borivli Vasai
www.bepioneer.com
askpioneer@rediffmail.com
facebook : pioneer bscit classes
9920812021
<table>
<thead>
<tr>
<th>PROGRAMME : B. Sc (Information Technology)</th>
<th>Semester – V</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE: ASP.NET with C# (COURSE CODE – USIT502)</td>
<td></td>
</tr>
<tr>
<td>Periods per week</td>
<td>Lecture</td>
</tr>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
</tr>
<tr>
<td>Evaluation System</td>
<td>Theory Examination</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Unit-I Review of .NET frameworks, Introduction to C#, Variables and expressions, flow controls, functions, debugging and error handling, OOPs with C#, Defining classes and class members. 10 Lectures

Unit-II Assembly, Components of Assembly, Private and Shared Assembly, Garbage Collector, JIT compiler. Namespaces Collections, Delegates and Events. **Introduction to ASP.NET 4:** Microsoft.NET framework, ASP.NET lifecycle. CSS: Need of CSS, Introduction to CSS, Working with CSS with visual developer. 10 Lectures

Unit-III **ASP.NET server controls:** Introduction, How to work with button controls, Textboxes, Labels, checkboxes and radio buttons, list controls and other web server controls, web.config and global.asax files. **Programming ASP.NET web pages:** Introduction, data types and variables, statements, organizing code, object oriented basics. 10 Lectures

Unit-IV **Validation Control:** Introduction, basic validation controls, validation techniques, using advanced validation controls. **State Management:** Using view state, using session state, using application state, using cookies and URL encoding. **Master Pages:** Creating master pages, content pages, nesting master pages, accessing master page controls from a content page. **Navigation:** Introduction to use the site navigation, using site navigation controls. 10 Lectures

Unit-V **Databases:** Introduction, using SQL data sources, GridView Control, DetailsView and FormView Controls, ListView and DataPager controls, Using object datasources. **ASP.NET Security:** Authentication, Authorization, Impersonation, ASP.NET provider model 10 Lectures

Unit-VI **LINQ:** Operators, implementations, LINQ to objects,XML,ADO.NET, Query Syntax. **ASP.NET Ajax:** Introducing AJAX, Working of AJAX, Using ASP.NET AJAX server controls. **JQuery:** Introduction to JQuery, JQuery UI Library, Working of JQuery 10 Lectures
Books:
Beginning Visual C# 2010, K. Watson, C. Nagel, J.H Padderson, J.D. Reid, M. Skinner, Wrox (Wiley) 2010. (Unit I: Chapter 1 to 10, Unit II: Chapter 11, 13)
Murach’s ASP.NET 4 Web Programming with C# 2010, 4th Edition, Anne Boehm, Joel Murach, SPD.
(Unit III: Chapter 6 Unit IV: Chapter 7,8,9,10 Unit V: Chapter 12,13,14,15,16,17,19,20 Unit VI: Chapter 21)
Beginning ASP.NET 4 in C# and VB, I. Spanjaars, Reprint 2011. (Unit II: Chapter 2 and 3 Unit III: Chapter 5 Unit VI: Chapter 14)

6 REASONS to join Pioneer classes
1. BEST TEAM OF PROFESSORS
2. Consistent RESULT
3. Printed Notes
4. Infrastructure.
5. Various offers in Fees
6. The oldest classes for Bsc IT / Comp Sci Promise, performance, progress.
References:
ASP.NET 4.0 programming, J. Kanjilal, Tata McGraw-Hill.
Programming ASP.NET, D. Esposito, Microsoft Press (Dreamtech), Reprint 2011.
ASP.NET.
Visual C#.NET, Vijay Nicoel, TMH

Course Code : USIT5P2

Practical:
1. Simple Programs with C#:
 a) Write a console application that obtains four int values from the user and displays the product. Hint: you may recall that the Convert.ToDouble() command was used to convert the input from the console to a double; the equivalent command to convert from a string to an int is Convert.ToInt32().
 b) If you have two integers stored in variables var1 and var2, what Boolean test can you perform to see if one or the other (but not both) is greater than 10?
 c) Write an application that includes the logic from Exercise 1, obtains two numbers from the user, and displays them, but rejects any input where both numbers are greater than 10 and asks for two new numbers.
 d) Write a console application that places double quotation marks around each word in a string.
 e) Write an application that uses two command-line arguments to place values into a string and an integer variable, respectively. Then display these values.
 f) Write an application that receives the following information from a set of students:
 Student Id:
 Student Name:
 Course Name:
 Date of Birth:
 The application should also display the information of all the students once the data is entered. Implement this using an Array of Structs.
 g) Write programs using conditional statements and loops:
 i. Generate Fibonacci series.
 ii. Generate various patterns (triangles, diamond and other patterns) with numbers.
 iii. Test for prime numbers.
 iv. Generate prime numbers.
 v. Reverse a number and find sum of digits of a number.
 vi. Test for vowels.
 vii. Use of foreach loop with arrays.

2. Object oriented programs with C#
 b) Program using classes.
 c) Program with different features of C#
 i. Function Overloading
 ii. Inheritance (all types)
 iii. Constructor overloading
 iv. Interfaces
 v. Using Delegates and events
 vi. Exception handling
3. Programs using different controls.
4. Programs using CSS.
5. Programs using ASP.NET Server controls.
6. Database programs with ASP.NET and ADO.NET
7. Programs using Language Integrated query.
8. Programs securing web pages.
9. Implement the exercise on AJAX.
10. Implement the exercise on JQuery.
<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lecture</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation System</th>
<th>Theory Examination</th>
<th>Theory Internal</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Fundamentals of testing:</th>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Necessity of testing, what is it, Testing principles, Fundamental test process, The psychology of testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Testing throughout the software life cycle:</th>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Software development models, Test levels, Test types: the targets of testing, Maintenance testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Static techniques:</th>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reviews and the test process, Review process, Static analysis by tools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-IV</th>
<th>Test design techniques:</th>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identifying test conditions and designing test cases, Categories of test design techniques, Specification-based or black-box techniques, Structure-based or white-box techniques, Experience-based techniques</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-V</th>
<th>Test management:</th>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test organization, Test plans, estimates, and strategies, Test progress monitoring and control, Configuration management, Risk and testing, Incident management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-VI</th>
<th>Tool support for testing:</th>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Types of test tool, Effective use of tools: Potential benefits and risks, Introducing a tool into an organization</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Books:

(Unit I: Chapter 1,2, Unit II: Chapter 3, Unit III: Chapter 4, Unit IV: Chapter 5, Unit V: Chapter 6, Unit VI: Chapter 7)

B2: **FOUNDATIONS OF SOFTWARE TESTING** By Dorothy Graham, Erik van Veenendaal, Isabel Evans, Rex Black
(Unit I: Chapter 1, Unit II: Chapter 2, Unit III: Chapter 3, Unit IV: Chapter 4, Unit V: Chapter 5, Unit VI: Chapter 6)

References:

Software Testing by Yogesh Singh, Cambridge University Press
Software Testing Principles, Techniques and Tools, M.G. Limaye, TMH
Introduction to Software Testing, Paul Ammann, Jeff Offutt, Cambridge University Press
Course Code: USIT5P3

Practicals:
1. You have got the brilliant idea of setting up a company that sells testing services to software houses. Make a strategic plan for your company, taking into account the following issues:
 - What is the testing process that will be followed in the company?
 - What is the focus of the testing services?
 - What kind of people are you going to hire as staff for the company?
 - How are you going to validate that a testing project carried out in the company has been beneficial to the customer?
 - What kind of automated tools will the company use?
2. Prepare a small project and submit SRS, design, coding and test plan.
3. The program reads an arbitrary number of temperatures (as integer numbers) within the range -60°C … +60°C and prints their mean value. Design test cases for testing the program with the black-box strategy.
4. When getting a person’s weight and height as input, the program prints the person’s body weight index. The weight is given in kilograms (as a real number, for instance: 82.0) and the height in meters (as a real number, for instance: 1.86). The body weight index equals weight divided by height squared: weight / (height²). Design test cases for testing the program with the black-box strategy.
5. Let us study the following program:
 x=0; read(y);
 while (y > 100) { x=x+y; read(y); }
 if (y < 200) print(x) else print(y);
 a) Construct a control-flow graph for the program.
 b) Design test cases for reaching complete branch coverage over the program. Use as few test cases as possible.
6. Design test cases for the following program with the “simple loop” strategy:
 x=0; read(y);
 while ((y > 100) && (x < 10)) { x=x+1; read(y); }
 print(y);
 a) Construct a data-flow graph for the program with respect to variable x.
 b) Which execution paths have to be traversed during testing, in order to reach complete all-definitions coverage with respect to variable x?
 c) Minimize the number of paths and tests.
 d) Which execution paths have to be traversed during testing, in order to reach complete all-uses coverage with respect to variable x? Minimize the number of paths and tests.
 e) Design test cases for reaching the (minimal) complete all-uses coverage with respect to variable x.
7. MANUAL TESTING for the project
 a) Walkthrough
 b) Whitebox Testing
 c) Blackbox Testing
 d) Unit Testing
 e) Integration Testing
8. Functional Testing
 a) Boundary value Testing
 b) Equivalence class testing
 c) Decision Table based testing
 d) Cause-effect graphs
10. AUTOMATED TESTING for websites
 a) Load Testing
 b) Performance Testing
PROGRAMME: B. Sc (Information technology)

<table>
<thead>
<tr>
<th>COURSE: ADVANCED JAVA</th>
<th>Semester – V</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE: USIT504</td>
<td></td>
</tr>
</tbody>
</table>

Periods per week

<table>
<thead>
<tr>
<th>1 Period is 50 minutes</th>
<th>Lecture</th>
<th>Practical</th>
</tr>
</thead>
</table>

Evaluation System

<table>
<thead>
<tr>
<th></th>
<th>Theory Examination</th>
<th>Theory Internal</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
</tbody>
</table>

Unit-I

Event Handling: The delegation event model, Events, Event classes, Event Listener Interfaces, Using the Delegation event model, Adapter classes, inner classes

AWT: Windows fundamentals, Working with frame windows, Control fundamentals, - Labels, Buttons, CheckBox, Radio button, TextField, Understanding Layout Manager

<table>
<thead>
<tr>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
</table>

Unit-II

Swing: JColorChooser, JCombox, JFileChoosre, JFrame, JMenuBar, JOptionPane, JLayeredPane, JScrollPane, JPanel, JPopupMenu, JProgressBar, JRootPane, JScrollBar, JScrollPane, JSeparator, JSlider, JSplitPane, JTabbedPane, JTable, JTableHeader, JtoolBar, JToolTip, Jtree, JViewPort, JEditorPanel, JTextPane, JTextArea, JTextField, JPasswordField, JButton, JMenuItem, JCheckBox, JMenuItem, JRadioButton, JMenuItem, JMenu.

<table>
<thead>
<tr>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
</table>

Unit-III

Introduction to servlets: Need for dynamic content, Java servlet technology, why servlets?

Servlet API and Lifecycle: Servlet API, servletConfig interface, ServletRequest and ServletResponse Interfaces, GenericServlet Class, ServletInputStream and ServletOutputStream Classes, RequestDispatcher Interface, HttpServlet Class, HttpServletRequest and HttpServletResponse Interfaces, HttpSession Interface, Servlet Lifecycle.

Working with servlets: organization of a web application, creating a web application (using netbeans), creating a servlet, compiling and building the web application

<table>
<thead>
<tr>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
</table>

Unit-IV

JDBC: Design of JDBC, JDBC configuration, Executing SQL statement, Query Execution, Scrollable and updatable result sets, row sets, metadata, Transaction.

JSP: Introduction, disadvantages, JSP v/s Servlets, Lifecycle of JSP, Comments, JSP documents, JSP elements, Action elements, implicit objects, scope, character quoting conventions, unified expression language.

<table>
<thead>
<tr>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
</table>

Unit-V

Java server Faces:

Need of MVC, what is JSF?, components of JSF, JSF as an application, JSF lifecycle, JSF configuration, JSF web applications (login form, JSF pages)

EJB: Enterprise bean architecture, Benefits of enterprise bean, types of beans, Accessing beans, packaging beans, creating web applications, creating enterprise bean, creating web client, creating JSP file, building and running web application

<table>
<thead>
<tr>
<th></th>
<th>10 Lectures</th>
</tr>
</thead>
</table>

Unit-VI

HIBERNATE: Introduction, Writing the application, application development approach, creating database and tables in MySQL, creating a web application, Adding the required library files, creating a java bean class, creating hibernate configuration and mapping file, adding a mapping resource, creating JSPs.

STRUTS: Introduction, Struts framework core components, installing and setting up struts, getting started with struts.
Books:
B1 Java Complete Reference, Herbert Schildt, Seventh Edition, Tata McGraw Hill. (Unit I Chapter 20,21,22)
B2 Core Java Vol. II – Advanced Features, Cay S. Horstmans, Gary Coronell, Eight Edition, Pearson Education (Unit II: Chapter 6, Unit IV: Chapter 4 and Oracle Java Documentation on UISWing)
B3 Java EE 6 for Beginners, Sharanam Shah, Vaishali Shah, Shroff Publishers and Distributors (Unit III: Chapter 5,6,7, Unit IV: Chapter 13,14,15,16, Unit V: Chapter 18, 19,24,25, Unit V: Chapter 33,34,35,36,37,38)

References:
Java EE Project using EJB 3, JPA and struts 2 for beginners, Shah, SPD
Java Programming A practical Approach, C Xavier, McGraw Hill
Advanced Java Technology, Savaliya, Dreamtech.

Course Code : USIT5P4

Practicals:
1. Write a java program to present a set of choices for a user to select Stationary products and display the price of Product after Selection from the list.
2. Write a java program to demonstrate typical Editable Table, describing employee details for a software company.
3. Write a java program using Split pane to demonstrate a screen divided in two parts, one part contains the names of Planets and another Displays the image of planet. When user selects the planet name form Left screen, appropriate image of planet displayed in right screen.
4. Develop Simple Servlet Question Answer Application to demonstrate use of HttpServletRequest and HttpServletResponse interfaces.
5. Develop Servlet Application of Basic Calculator (+,-,*, /, %) using ServletInputStream and ServletOutputStream.
6. Develop a JSP Application to accept Registration Details form user and Store it into the database table.
7. Develop a JSP Application to Authenticate User Login as per the registration details. If login success the forward user to Index Page otherwise show login failure Message.
8. Develop a web application to add items in the inventory using JSF.
10. Develop a Hibernate application to store Feedback of Website Visitor in MySQL Database.
11. Develop a simple Struts Application to Demonstrate 3 page Website of Teaching Classes which passes values from every page to another.
12. Develop a simple Struts Application to Demonstrate E-mail Validator.
PROGRAMME : B. Sc (Information Technology) Semester – V

COURSE: LINUX ADMINISTRATION (COURSE CODE – USIT505)

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lecture</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation System</th>
<th>Hours</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Examination</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Theory Internal</td>
<td>--</td>
<td>40</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Unit-I

Introduction: Introduction to UNIX, Linux, GNU and Linux distributions

Duties of the System Administrator: The Linux System Administrator, Installing and Configuring Servers, Installing and Configuring Application Software, Creating and Maintaining User Accounts, Backing Up and Restoring Files, Monitoring and Tuning Performance, Configuring a Secure System, Using Tools to Monitor Security

Boot and shutting down: Boot loaders-GRUB, LILO, Bootstrapping, Init process, rc scripts, Enabling and disabling services.

The File System: Understanding the File System Structure, Working with Linux-Supported File Systems, Memory and Virtual File Systems, Linux Disk Management, Network Configuration Files

Unit-II

System Configuration Files: System wide Shell Configuration Scripts, System Environmental Settings, Network Configuration Files, Managing the init Scripts, Configuration Tool, Editing Your Network Configuration

TCP/IP Networking: Understanding Network Classes, Setting Up a Network Interface Card (NIC), Understanding Subnetting, Working with Gateways and Routers, Configuring Dynamic Host Configuration Protocol, Configuring the Network Using the Network

The Network File System: NFS Overview, Planning an NFS Installation, Configuring an NFS Server, Configuring an NFS Client, Using Automount Services, Examining NFS Security

Unit-III

Connecting to Microsoft Networks: Installing Samba, Configuring the Samba Server, Creating Samba Users 3, Starting the Samba Server, Connecting to a Samba Client, Connecting from a Windows PC to the Samba Server

Additional Network Services: Configuring a Time Server, Providing a Caching Proxy Server

Unit-IV

Internet Services: Secure Services, SSH, scp, sftp Less Secure Services (Telnet,FTP, sync,rsh ,rlogin,finger,talk and ntalk, Linux Machine as a Server, Configuring the xinetd Server, Comparing xinetd and Standalone, Configuring Linux Firewall Packages, Domain Name System: Understanding DNS, Understanding Types of Domain Servers, Examining Server Configuration Files, Configuring a Caching DNS Server, Configuring a Secondary Master DNS Server, Configuring a Primary Master Server, Checking Configuration

Unit-V

Configuring Mail Services: Tracing the Email Delivery Process, Mail User Agent (MUA), Introducing SMTP, Configuring Sendmail, Using the Postfix Mail Server, Serving Email with POP3 and IMAP, Maintaining Email Security

Configuring FTP Services: Introducing vsftp, Configuring vsftp, Advanced FTP Server Configuration, Using SFTP

Unit-VI

Configuring a Web Server: Introducing Apache, Configuring Apache, Implementing SSL, Enabling CGI, Enabling PHP, Creating a Secure Server with SSL

System Administration: Administering Users and Groups Installing and Upgrading Software Packages

Books:
6 REASONS to join **Pioneer classes**

1. **BEST TEAM OF PROFESSORS**
2. Consistent RESULT
3. Printed Notes
4. Infrastructure.
5. Various offers in Fees
6. The oldest classes for Bsc IT / Comp Sci
 Promise, performance, progress.
References:
UNIX: Concepts and techniques, S. Das, Tata McGraw-Hill,
Tata McGraw-Hill
Beginning Linux by Neil Mathew 4th Edition

Course Code : USIT5P5

Practicals:
1. Installation of Red HAT/Fedora Linux operating system.
 a. Partitioning drives
 b. Configuring boot loader (GRUB/LILO)
 c. Network configuration
 d. Setting time zones
 e. Creating password and user accounts
 f. Shutting down
2. Software selection and installation
3. Linux system administration
 a. Becoming super user
 b. Temporarily changing user identity with su command
 c. Using graphical administrative tools
 d. Administrative commands
 e. Administrative configuration files
4. Connecting to the internet and configuring samba
 a. Setting up linux as a proxy server
 b. Configuring mozilla or firefox to use as a proxy
 c. Setting Up Samba Server
5. Setting up local area network
 a. LAN topologies
 b. LAN equipment
 c. Networking with TCP/IP
 d. Configuring TCP/IP
 e. Adding windows computer's to user LAN
 f. IP address classes
6. Server setup and configuration
 a. Setting up NFS file server
 b. The Apache web server
 c. Setting up FTP server
7. Understanding COMPUTER SECURITY: Firewall and security configurations
 a. LINUX security checklist
 b. Securing linux with IP table firewalls
 c. Configuring an IP table firewall
 d. Securing Linux features
10. Setting up hardware devices including sound card and printers and others (USB devices etc).
11. Working with X-windows
 a. Switching between text and graphical consoles
 b. set up my video card, monitor and mouse for the X-server.
 c. Install KDE, change default desktop to KDE (or Gnome)
 d. Accessing X-window remotely.
 e. Installing TrueType fonts from my MS Windows partition.
f. Display and Control a Remote Desktop using VNC.
Semester VI

PROGRAMME : B. Sc (Information Technology) Semester – VI

COURSE: INTERNET TECHNOLOGY COURSE CODE – USIT601

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lecture</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation System</th>
<th>Theory Examination</th>
<th>Theory Internal</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours</td>
<td>Marks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Unit-II Address Resolution Protocol (ARP), Internet Control Message Protocol Version 4 (ICMPv4), Mobile IP, Unicast Routing Protocols (RIP, OSPF and BGP) 10 Lectures

Unit-III User Datagram Protocol (UDP), Transmission Control Protocol (TCP) 10 Lectures

Unit-IV Stream Control Transmission Protocol (SCTP), Host Configuration: DHCP, Domain Name System (DNS) 10 Lectures

Unit-V Remote Login: TELNET and SSH, File Transfer: FTP and TFTP; World Wide Web and HTTP, 10 Lectures

Unit-VI Electronic Mail: SMTP, POP, IMAP and MIME, Multimedia 10 Lectures

Books:

(Unit I: Chapter 2, 5, 7, 26, 27, Unit II: Chapter 8, 9, 10, 11, Unit III: Chapter 14,15, Unit IV:
Chapter 16, 18, 19, Unit V: Chapter 20, 21, 22, Unit VI: Chapter 23, 25)

References:
Course Code : USIT6P1

Practicals:
1. IPv4 Addressing and Subnetting
 a. Given an IP address and network mask, determine other information about the IP address such as:
 • Network address
 • Network broadcast address
 • Total number of host bits
 • Number of hosts
 b. Given an IP address, network mask, and subnetwork mask, determine other information about the IP address such as:
 • The subnet address of this subnet
 • The broadcast address of this subnet
 • The range of host addresses for this subnet
 • The maximum number of subnets for this subnet mask
 • The number of hosts for each subnet
 • The number of subnet bits
 • The number of this subnet

2. Use of ping and tracert/traceroute and arp utilities.
3. Configure IP static routing.
4. Configure IP routing using RIP.
5. Configuring OSPF.
6. Configuring UDP and TCP
7. Run different STCP commands.
8. Configure DHCP and DNS.
9. Configure FTP and HTTP. Run Telnet and SSH.
10. Configure SMTP, POP3, IMAP and MIME.
Course Code : USIT6P2

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lecture</th>
<th>Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation System</th>
<th>Theory Examination</th>
<th>Theory Internal</th>
<th>Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

| Unit-I | Conventional Software Management: The waterfall model, conventional software Management performance.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

| Unit-II | The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.
Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.
Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.
Model based software architectures: A Management perspective and technical perspective. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

| Unit-V | Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation.
Tailoring the Process: Process discriminants. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-VI</th>
<th>Future Software Project Management: Modern Project Profiles, Next generation Software economics, modern process transitions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

Books:
(Unit I: Chapter 1, 2, 3, Unit II: Chapter 4, 5, 6, 7, Unit III: Chapter 8, 9, 10 Unit IV: Chapter 11, 12, Unit V: Chapter 13, 14, Unit VI: Chapter 15, 16, 17)

Case Study:
At least 8 case studies should be presented on various topics covering the entire syllabus.
<table>
<thead>
<tr>
<th>PROGRAMME: B. Sc (Information Technology)</th>
<th>Semester – VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE: DATA WAREHOUSING</td>
<td>COURSE CODE – USIT603</td>
</tr>
<tr>
<td>Periods per week</td>
<td>Lecture 5</td>
</tr>
<tr>
<td>1 Period is 50 minutes</td>
<td>Practical 3</td>
</tr>
<tr>
<td>Evaluation System</td>
<td>Theory Examination 2 60</td>
</tr>
<tr>
<td></td>
<td>Theory Internal -- 40</td>
</tr>
<tr>
<td></td>
<td>Practical 50</td>
</tr>
</tbody>
</table>

Unit-I

Introduction to Data Warehousing: Introduction, Necessity, Framework of the datawarehouse, options, developing datawarehouses, end points.

Data Warehousing Design Consideration and Dimensional Modeling: Defining Dimensional Model, Granularity of Facts, Additivity of Facts, Functional dependency of the Data, Helper Tables, Implementation many-to-many relationships between fact and dimensional modelling.

Unit-II

An Introduction to Oracle Warehouse Builder: Installation of the database and OWB, About hardware and operating systems, Installing Oracle database software, Configuring the listener, Creating the database, Installing the OWB standalone software, OWB components and architecture, Configuring the repository and workspaces.

Defining and Importing Source Data Structures: An overview of Warehouse Builder Design Center, Importing/defining source metadata, Creating a project, Creating a module, Creating an Oracle Database module, Creating a SQL Server database module, Importing source metadata from a database, Defining source metadata manually with the Data Object Editor, Importing source metadata from files.

Unit-III

Designing the Target Structure: Data warehouse design, Dimensional design, Cube and dimensions, Implementation of a dimensional model in a database, Relational implementation (star schema), Multidimensional implementation (OLAP), Designing the ACME data warehouse, Identifying the dimensions, Designing the cube, Data warehouse design in OWB, Creating a target user and module, Create a target user, Create a target module, OWB design objects.

Creating the Target Structure in OWB: Creating dimensions in OWB, The Time dimension, Creating a Time dimension with the Time Dimension Wizard, The Product dimension, Product Attributes (attribute type), Product Levels, Product Hierarchy (highest to lowest), Creating the Product dimension with the New Dimension Wizard, The Store dimension, Store Attributes (attribute type), data type and size, and (Identifier), Store Levels, Store Hierarchy (highest to lowest), Creating the Store dimension with the New Dimension Wizard, Creating a cube in OWB, Creating a cube with the wizard, Using the Data Object Editor

Unit-IV

Extract, Transform, and Load Basics: ETL, Manual ETL processes, Staging, To stage or not to stage, Configuration of a staging area, Mappings and operators in OWB, The canvas layout, OWB operators, Source and target operators, Data flow operators, Pre/post-processing operators.

Designing and building an ETL mapping: Designing our staging area, Designing the staging area contents, Building the staging area table with the Data Object Editor, Designing our mapping, Review of the Mapping Editor, Creating a mapping.
<table>
<thead>
<tr>
<th>Unit-V</th>
<th>ETL: Transformations and Other Operators: STORE mapping, Adding source and target operators, Adding Transformation Operators, Using a Key Lookup operator, Creating an external table, Creating and loading a lookup table, Retrieving the key to use for a Lookup Operator, Adding a Key Lookup operator, PRODUCT mapping, SALES cube mapping, Dimension attributes in the cube, Measures and other attributes in the cube, Mapping values to cube attributes, Mapping measures’ values to a cube, Mapping PRODUCT and STORE dimension values to the cube, Mapping DATE_DIM values to the cube, Features and benefits of OWB. Validating, Generating, Deploying, and Executing Objects: Validating, Validating in the Design Center, Validating from the editors, Validating in the Data Object Editor, Validating in the Mapping Editor, Generating, Generating in the Design Center, Generating from the editors, Generating in the Data Object Editor, Generating in the Mapping Editor, Deploying, The Control Center Service, Deploying in the Design Center and Data Object Editor, The Control Center Manager, The Control Center Manager window overview, Deploying in the Control Center Manager, Executing, Deploying and executing remaining objects, Deployment Order, Execution order.</th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-VI</td>
<td>Extra Features: Additional editing features, Metadata change management, Recycle Bin, Cut, copy, and paste, Snapshots, Metadata Loader (MDL) exports and imports, Synchronizing objects, Changes to tables, Changes to dimensional objects and auto-binding, Warehouse Builder online resources. Datawarehousing and OLAP: Defining OLAP, The Value of Multidimensional data, OLAP terminologies, Multidimensional architectures, Multidimensional views of relational data, Physical Multidimensional databases, Data Explosion, Integrated relational OLAP, Data sparsity and data explosion.</td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

Books:
Data Warehousing by Soumendra Mohanty, Tata McGrawHill
(Unit I: Chapter 1, 2 Unit VI: 14).
Oracle Warehouse Builder 11g, Getting Started by Bob Griesemer, PACKT Publishing, SPD.
(Unit II: Chapter 1,3 Unit III: Chapter 3,4 Unit IV: Chapter 5,6 Unit V: Chapter 7,8 Unit VI: Chapter 9)

References:
DW2.0 The architecture for Next Generation of Datawarehousing by W.H. Inmon, Derek Strauss, Genia Neushloss, ELSEVIER.
Data Warehousing Fundamentals by Paulraj Ponnian, John Wiley.
The Data Warehouse Lifecycle toolkit by Ralph Kimball, John Wiley.

Course Code: USIT6P3

Practicals:
1. Importing the source data structures in Oracle.
2. Design the target data structure using Oracle.
3. Create the target structure in OWB (Oracle Web Builder).
4. Designed and build the ETL mapping.
5. Perform the ETL process and transform it to data marts.
6. Create the cube and process it in OWB.
7. Generate the different types of reports in using Oracle.
8. Perform the deployment of Warehouse.
9. Create the Pivot table and Pivot chart using some existing data or create the new data.
10. Import the cube in access and create Pivot table and chart.
<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lecture</th>
<th>Case Study</th>
<th>Hours</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation System

<table>
<thead>
<tr>
<th></th>
<th>Theory Examination</th>
<th>Theory Internal</th>
<th>Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>--</td>
<td>50</td>
</tr>
</tbody>
</table>

Programme: B. Sc (Information Technology)
Semester – VI

Course: IPR and CYBER LAWS
Course Code: USIT604

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Intellectual Property:</th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Protection of Intellectual Property</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copyright, Related Rights, Patents, Industrial Designs, Trademark, Unfair Competition</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Information Technology Related Intellectual Property Rights</th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protection of Semi-conductor Chips-Objectives Justification of protection, Criteria, Subject-matter of Protection, WIPO Treaty, TRIPs, SCPA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain Name Protection-Objectives, domain name and Intellectual Property, Registration of domain names, disputes under Intellectual Property Rights, Jurisdictional Issues, and International Perspective.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Patents (Ownership and Enforcement of Intellectual Property)</th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patents-Objectives, Rights, Assignments, Defences in case of Infringement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copyright-Objectives, Rights, Transfer of Copyright, work of employment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infringement, Defences for infringement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trademarks-Objectives, Rights, Protection of good will, Infringement, Passing off, Defences.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designs-Objectives, Rights, Assignments, Infringements, Defences of Design Infringement</td>
<td></td>
</tr>
</tbody>
</table>

| Unit-IV | Enforcement of Intellectual Property Rights - Civil Remedies, Criminal Remedies, Border Security measures. Practical Aspects of Licensing – Benefits, Determinative factors, important clauses, licensing clauses. | 10 Lectures |

<table>
<thead>
<tr>
<th>Unit-V</th>
<th>Cyber Law: Basic Concepts of Technology and Law: Understanding the Technology of Internet, Scope of Cyber Laws, Cyber Jurisprudence</th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rights of Netizens and E-Governance: Privacy and Freedom Issues in the Cyber World, E-Governance, Cyber Crimes and Cyber Laws</td>
<td></td>
</tr>
</tbody>
</table>

| Unit-VI | Information Technology Act 2000: Information Technology Act-2000-1 (Sec 1 to 13), Information Technology Act-2000-2 (Sec 14 to 42 and Certifying authority Rules), Information Technology Act-2000-3 (Sec 43 to 45 and Sec 65 to 78), Information Technology Act-2000-4(Sec 46 to Sec 64 and CRAT Rules), Information Technology Act-2000-5 (Sec 79 to 90), Information Technology Act-2000-6 (Sec 91-94) Amendments in 2008. | 10 Lectures |
Books:
B1: http://www.dcmsme.gov.in/emerger/website_material_on_IPR.pdf (Unit I)
B2: Cyber Law Simplified by Vivek Sood, Tata McGraw Hill (Unit V: Chapter 7)
 (Unit II: Chapter 4, 5, Unit V: Chapter 1, 4)
B4: Licensing Art & Design by Caryn R. Leland, Allworth Press (Unit IV)
B5: Patents, Trademarks, Copyright, Industrial Designs and Geographical Indications by Dr. B. L. Wadhera
 (Unit I, II, III, IV)
B6: www.cyberlawtimes.com/itact2008.pdf (Unit VI)

Course Code: USIT6P4

Case Studies:
At least 8 case studies should be presented on various topics covering the entire syllabus.
<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Classification of Signals & systems: Introduction, Continuous Time and discrete time signals, classification of signals, simple manipulations of discrete time signals, amplitude and phase spectra, classification of systems, analog to digital conversion of signals. Fourier Analysis of Periodic and Aperiodic Continuous Time Signals & Systems: Introduction, trigonometric Fourier series, Complex or exponential form of Fourier series, Parsevals identity for Fourier series, Power spectrum of a periodic function. Fourier transform and its properties, Fourier transforms of some important signals, Fourier transforms of power and energy signals.</th>
<th>10 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-II</td>
<td>Applications of Laplace Transform to System Analysis: Introduction, definition, region of convergence (ROC) LT of some important functions, Initial and final value theorems, convolution integral, Table of Laplace transforms, partial fraction expansions, network transfer function. S-plane Poles and zeros. LT of periodic functions. Application of LT in analysing networks.</td>
<td>10 Lectures</td>
</tr>
<tr>
<td>Unit-III</td>
<td>Z Transform: Introduction, definition of z-transform, properties of z-transform, evaluation of inverse z-transform.</td>
<td>10 Lectures</td>
</tr>
<tr>
<td>Unit-IV</td>
<td>Linear Time Invariant Systems: Introduction, properties of DSP system, Discrete convolution, solution of linear constant coefficient difference equation. Frequency domain representation of discrete time signals and systems. Difference equation and its relationship with system function, impulse response and frequency response.</td>
<td>10 Lectures</td>
</tr>
<tr>
<td>Unit-V</td>
<td>Discrete and Fast Fourier Transforms: Introduction, discrete Fourier series, Discrete time Fourier transform (DTFT), Fast Fourier transform (FFT), Computing an inverse DFT by doing direct DFT, Composite radix FFT, Fast (Sectioned) convolution, Correlation.</td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>
B1: Digital Signal Processing by S. Salivahanan, C. Gnanapriya Second Edition, TataMcGrawHill (Unit I: Chapter 1,2, Unit II: Chapter 3, Unit III: Chapter 4, Unit IV: Chapter 5, Unit V: Chapter 6, Unit VI: Chapter 7, 8)

References:
Signals and Systems by Alan V. Oppenheim and Alan S. Willsky with S. Hamid Nawab, Second Edition, PHI(EEE)
Signals and Systems by A. Anand Kumar, EEE, PHI.

Course Code : USIT6P5

Practicals:
1. Write a Scilab program to study and implement Discrete Time Signals and systems.
 a. Unit Step Sequence
 b. Unit Ramp Sequence
 c. Exponential Sequence
 d. Exponential Increasing Sequence
 e. Exponential Decreasing Sequence
 f. Even Signals
 g. Odd Signals
2. Write a Scilab program to implement Z-Transforms.
 a. Z-transform of Finite duration signals
 b. Time shifting property of Z transform
3. Write a Scilab program to demonstrate convolution property.
4. Write a Scilab program to demonstrate correlation property.
5. Write a Scilab program to implement Frequency Response of First order Difference Equation.
6. Write Scilab program to
 a. Determine N-Point DFT.
 b. Find DFT and IDFT of the given sequence.
7. Write a Scilab program to implement circular convolution using DFT
8. Write Scilab program to perform linear filtering (linear convolution using DFT).
10. Write Scilab program to implement low pass, high pass and band pass filters.
COURSE: GEOGRAPHIC INFORMATION SYSTEMS

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lecture</th>
<th>Practical</th>
<th>Hours</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Period is 50 minutes</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation System

Theory Examination	2	60
Theory Internal	--	40
Practical		50

<table>
<thead>
<tr>
<th>Unit-I</th>
<th>Spatial Data Concepts:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to GIS, Geographically referenced data, Geographic, projected and planer coordinate system, Map projections, Plane coordinate systems, Vector data model, Raster data model</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-II</th>
<th>Data Input and Geometric transformation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing GIS data, Metadata, Conversion of existing data, Creating new data, Geometric transformation, RMS error and its interpretation, Resampling of pixel values.</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Attribute data input and data display:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attribute data in GIS, Relational model, Data entry, Manipulation of fields and attribute data, cartographic symbolization, types of maps, typography, map design, map production</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-IV</th>
<th>Data exploration:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exploration, attribute data query, spatial data query, raster data query, geographic visualization</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-V</th>
<th>Vector data analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, buffering, map overlay, Distance measurement and map manipulation.</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-V</th>
<th>Raster data analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data analysis environment, local operations, neighbourhood operations, zonal operations, Distance measure operations.</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-VI</th>
<th>Spatial Interpolation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elements, Global methods, local methods, Kriging, Comparisons of different methods</td>
</tr>
<tr>
<td></td>
<td>10 Lectures</td>
</tr>
</tbody>
</table>

Books:

- **(Unit I: Chapter 1,2,3,4, Unit II: Chapter 5,6, Unit III: Chapter 4, Unit IV: Chapter 5, Unit V: Chapter 6, Unit VI: Chapter 7,8)**

References:

- Concepts and Techniques in Geographic Information Systems by Chor Pang Lo and Albert K. W. Yeung
- http://www.ncgia.ucsb.edu/giscc/

Course Code : USIT6P6

Practicals:

1. Implement data in import and generation coordinate system basics.
2. Generate data (points, line, polygons) and topology.
3. Geo-referencing and image registration
4. Implement 3D layers (DEM, Contours, TIN, 3D models)
5. Querying GIS data
6. Distance and decisions analysis (spatial, geo-statistics, network, hydrology, topology, 3D analysis, extract overlay)
7. 3D visualizations
8. Cartography
The project should be undertaken preferably individually or by the group of maximum 4 students who will jointly work and implement the project. The candidate/group will select a project with the approval of the Guide (staff member) and submit the name of the project with a synopsis of the proposed work of not more than 02 to 08 pages within one month of the starting of the semester. The candidate/group is expected to complete detailed system design, analysis, data flow design, procurement of hardware and/or software, implementation of a few modules of the proposed work during the semester VI as a part of the term work submission in the form of a joint report. Candidate/group will submit the completed project work to the department at the end of semester VI as mentioned below.

1. The workable project.
2. The project report in the bound journal complete in all respect with the following :-
 a. Problem specifications.
 b. System definition – requirement analysis.
 c. System design – dataflow diagrams, database design
 d. System implementation – algorithm, code documentation
 e. Test results and test report.
 f. In case of object oriented approach – appropriate process be followed.

The project report should contain a full and coherent account of your work. Although there will be an opportunity to present the work verbally, and demonstrate the software, the major part of the assessment will be based on the written material in the project report. One can expect help and feedback from the project guide, but ultimately it’s the candidates own responsibility. The suggestive structure of a project report should be guided by your guide in selecting the most appropriate format for your project.

The oral examination will be conducted by an internal and external examiner as appointed by the University.